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Abstract-A method is described for determining the minimum bubble departure diameter in saturated 
nucleate pool boiling. It is shown that the minimum departure size varies with Jakob number only. Pre- 
dicted results are compared with the smallest experimental departure diameters reported in literature. 
Satisfactory agreement is achieved when the minimum departure size has been obtained on the basis of 

bubble growth rate law recommended by Cole and Shulman. 

NOMENCLATURE 

coefficients appearing in equation (8); 

specific heat of liquid ; 
instantaneous bubble diameter ; 
bubble base diameter ; 
departure diameter ; 
minimum departure diameter ; 
dimensionless minimum departure 
diameter ; defined by equation (21) ; 
function, defined by equation (12); 
buoyant force ; 
surface tension force ; vertical com- 
ponent ; 
liquid inertia force ; 
pressure restraining force ; given by 
equation (7) ; 
gravitational acceleration ; 
conversion constant ; 
defined by equation (4) ; 
Jakob number = ATc,p_,fp,l[dimen- 
sionless] ; 
time ; 
difference between wall temperature 
and saturation temperature. 

IN THE nucleate pool boiling the bubble depar- 
ture process is controlled by large numbers of 
variables. A complete analysis of the problem is 
not available although several expressions have 
been proposed for predicting the departure size 
[ 11. One major difficulty concerning this problem 
is that the boundary conditions at the heated wall 
are uncertain. Therefore, the question may be 
raised if it is possible to acquire any information 
pertinent to the bubble departure without 
knowing in advance the boundary conditions at 
the heated wall. The present investigation 
indicates that this is possible when the objective 
of the analysis is to determine the minimum 
bubble departure diameter. 

angle, shown in Fig. 1; 
bubble contact angle ; 
latent heat of vaporization ; 
liquidandvapordensitiesrespectively, 
surface tension ; 
parameter, defined by equation (13). 

1. INTRODUCTION 

Greek symbols It is shown that the minimum bubble size 
thermal diffusivity ; can be expressed, in terms of Jakob number, by a 
growth constant, defined by equation simple equation. Derivation of this equation 

(1); assumes that the bubble growth rate law is 

931 



932 A. M. KIPER 

already known. A comparison between the 
predicted results and the experimental data 
has been made for Jakob numbers ranging from 
10 through 792. This study, besides providing the 
minimum departure diameter, helps one to iden- 
tify the relevant thermodynamic parameters 
which influence the departure phenomenon. 

2. ANALYSIS 

Following are the fundamental assumptions 
used in the analysis : 

0) 

(ii) 

Vapor bubbles are assumed to be isolated. 
Bulk of the liquid is at the saturation 
temperature. 
The bubble is considered to be of spherical 
form ending to a small neck which connects 
the bubble to the heated surface, Fig. 1. 

( Not to scale) 

FIG. 1. Geometry of the growing bubble. 

Johnson et al. [Z] have reported that, among 
other bubble shapes, the spherical bubble 
has the smallest departure size. Since the 
present analysis is concerned with the 
minimum departure size, assumption of the 
spherical bubble shape is plausible. 

(iii) 

(iv) 

Forces acting on the isolated bubble have 
been computed by following the method of 
Keshock and Siegel [3] with the exception 
of a so-called pressure restraining force 
which will be discussed later. In agreement 
with the experimental results reported in 
[2], the drag force and the vapor inertia 
force are assumed to be negligible in 
comparison with the other forces. 
The contact angle 8 is defined as shown in 
Fig. 1. This requires modification of the 
surface tension force formulated in [3]. 
Relation given in this reference does not 
take into account presence of the bubble 
neck. 

(v) The bubble growth parameter fl is given by 

(vi) 

D = #It+. (1) 

Departure of the bubble from the heating 
surface is described by application of the 
force balance equation just prior to the 
necking down of the bubble. In the earlier 
stages of growth, this equation is not 
satisfied and the vapor bubble is held down 
on the surface by hydrodynamic forces. 
It is assumed that the bubble departure from 
the surface will not occur until the force 
balance equation is satisfied. 

Referring to Fig. 1, forces acting on the 
growing bubble are given by the following 
relations : 

Buoyant force 

Forces opposing bubble departure will be taken 
as negative. Since width of the bubble neck is 
very small no correction is applied to the 
buoyant force to account for the fact that 
the base area does not have the liquid pressure 
acting underneath it. For the same reason, the 
excess pressure force on the spherical surface 
area directly over the base have been neglected. 

Surface tension force 
Vertical component of the surface tension 
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force is given by 

F,, = - oaD, cos y. (3) 

If geometry of the neck is known then, Db 
cos y can be expressed as 

D,cosy = G(6)D (4) 

where G(B) is related to geometry of the bubble 
neck. The left side of equation (4) depends, 
through D, and y, on the conditions at the 
heating surface. Consequently, the surface con- 
ditions will influence both the neck geometry 
and the bubble diameter. From equations (3) 
and (4) one obtains 

F,, = - mG(tl)D. (5) 

The explicit form of G(0) cannot be written with- 
out knowing the neck geometry and conditions 
at the heating surface. 

Liquid inertia force 
The inertial force of the apparent liquid mass 

surrounding the bubble is given in [3]. Sub- 
stituting the growth law given by equation (1) 
this force has been determined as 

F, = 3;E 8”. (6) 

The liquid inertia force tends to pull the bubble 
off the heated surface. 

Pressure restraining force (form drag) 
This force is due to the specific pressure 

distribution on the bubble surface which tends to 
flatten the bubble also holds it against the wall. 
Witze et al. [4] have shown that the pressure 
restraining force FR influences the growth pro- 
cess. For a potential flow pattern surrounding a 
spherical bubble which grows on a plane 
surface FR is given, in [4], by 

F, = - 0.0181 R ; 8”. (7) 

It should be noted that the growth constant /? 

is defined differently here and in [4]. This explains 
the different numerical constants in the expres- 
sions given for the pressure restraining force. 

The pressure restraining force has not been 
considered in any of the earlier attempts to pre- 
dict bubble departure diameters. However, this 
force turns out to be of the same order of mag- 
nitude as the liquid inertia force. Just before 
departure, the boundary layer around a bubble 
may be assumed to be very thin. Therefore, 
equation (7) has been used here without any 
modification. 

By using the foregoing force expressions, at the 
moment of bubble departure, the force balance 
equation can be written as 

aDj + bD, + c = 0 (8) 
where, 

a = rz@, - p,) 
6% 

b = - d(8), (10) 

c = 0.0105 5 84. 
90 

(11) 

G(B), is the value of function G(0) at departure. 

3. SOLUTION OF EQUATION ,(8) 

Following [5], roots of this equation may be 
expressed in the form: 

[D& = - ~L(c#J), i = 1,2,3 (12) 

where 

C#12g. (13) 

It is seen from the foregoing equations that 

a>O,b<Oandc>O. (14) 

Hence, 4 < 0. It is required that D, be real and 
positive. Therefore,f,(4) in equation (12) should 
be positive. 

Within the range - 4/27 < 4 G 0 all roots of 
equation (8) are real and when #J < - 4/27. 
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there is one real root. For the latter, however, the 
real roots are negative. Therefore, for the present 
problem Cp can assume values within the range 

- 4/27 < d, < 0. (15) 

In this range there are two positive roots for 
each (p. These roots have been listed in [5] as 
fi(#) and &(#). Study of the listed values 
indicates that only f.(#) satisfies the conditions 
ofthe present problem. Toexplain this, variations 
of ft(4) and fi(+) should be considered. It is 
evident from equation (13) that the absolute 
value of 4 is proportional with the ratio of the 
forces which pull the bubble away from the 
heated surface to that which keeps the bubble 
attached to the surface. 

As the pulling forces increase relative to the 
opposing force, i.e. as 141 increases, departure 
diameter should decrease. Referring to equation 
(9). for a given fluid, coe~cient (a) does not 
change too much with changes in temperature 
and pressure. Therefore, an increase in 141 is 
caused by an increase in c/b ratio. Consequently, 
as c/b ratio or 141 increasesA( in equation (12) 
should decrease for a reduction in the departure 
diameter. As a result, for the solution, fi(4) 
should be a monotonically decreasing function 
of 141. This requirement is satisfied by fi(+) 
given in [5]. Since G(8) is not specified, it would 
be convenient to express the departure diameter 
in the following form which is obtained by com- 
bining equations (9), (12) and (13): 

where, c = c@). Because of #, equation (16) is 
still dependent on the value of G(8) at departure. 
This implies that the departure diameter is 
influenced, in general, by localized conditions at 
the heating surface. For a given /I, departure size 
~~can~determinedfromequation(l6)provid~ 
that the value of 9 is known at departure. Since 
this requires specific information concerning 

the neck geometry and the surface conditions, 
problem becomes rather complicated. For a 
special case. however. the solution turns out to 
be very simple. Now this case will be considered. 

4. MINIMUM DEPARTURE SIZE 

Referring to equation (I6), for a given growth 
parameter #?, departure size has a minimum at 
4 = - 4j27 for the range specified by expression 
(15), with 

f*(4) I= 1.50 at 4 = - 4127. (17) 

Considering two of the most commonly used 
equations for the bubble growth, parameter /? 
is given by the Fritz-Ende [6] expression as 

(18) 

and by the Plesset-Zwick [7] expression as 

(19) 

Cole and Shulman [8] experimentally investi- 
gated the bubble growth rates at high Jakob 
numbers. They conciuded that for Jakob nurn- 
bers above 100, the discrepancy between existing 
bubble growth theories and experiment becomes 
increasingly greater. These investigators recom- 
mend the following empirical relation 

p = 5(a)+ NjU . (20) 

Now, the minimum bubble departure dia- 
meter, Dmin, can be determined by substituting 
equations (11) and (17) in equation (16). Para- 
meter p is obtained from one of the equations 
(1 &o-(O). Consequently, the dimenstonless mini- 
mum departure diameter, Dmin, is given by one 
of the following three equations which are 
based, respectively. on equations (18)-(20) : 

tr,, = Dmjn[g/a2f= 0935 NJ% (21) 

.D,i” = 1.95 NJ% (22) 
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~min = 2.7 N,,. (23) 

In deriving these equations it has been assumed 
that pL - pV N pb 

The foregoing equations indicate that the 
minimum departure diameter is function of 
Jakob number only. 

5. COMPARISON WITH EXPERIMENTS AND 
DISCUSSION 

The foregoing three equations for Dmr” have 
been plotted in Fig. 2. The smallest experimental 
departure diameters reported by several investi- 
gators are also shown in the same figure. It is 
reasonable to assume that most of these exper- 
mental values are not the real minimums 
although they are the smallest departure dia- 
meters reported for different experimental con- 
ditions. 

So far as the minimum departure size is 
concerned, it is seen that especially at Jakob 
numbers larger than 100 the best agreement with 
the experimental data is given by equation (23). 
Some of the reported data is seen to be somewhat 
smaller than the minimum sizes predicted by this 
equation. However, it should be noted that the 
growth parameter /I used in equation (20) and 
consequently in equation (23) was given in [S] 
as an average value. It has been reported in [2] 
that the spherical bubbles have the smallest 
growth rates. If equation (20) which was obtained 
from Fig. 5 of [8] is determined to correlate the 
smallest growth constant values given in this 
figure then, the predicted minimum departure 
size will be represented in Fig. 2 with the broken 
straight line. In this case, it is seen that all 
experimental departure diameters lie above this 
line. However, it is believed that equation (23) 
as an approximation, represents variation of the 
minimum departure diameter reasonably well. 

Next, a brief discussion seems to be in order 
which concerns the departure diameter under 
general conditions. Referring to equation (16), 
it is seen that 4 is not known and its prediction 
is not an easv matter. Because of the lack of this 

IO’ IO' IO' 

J a ka b number, 40 

FIG. 2. Variation of the dimensionless minimum departure 

diameter vs. the Jakob number. 

Data source 
Fritz and Ende [6] Water 1 atm 
Cole and Shulman [S] Water, pressure: 50-360 mm Hg 
Cole and Shulman [8] Carbon tetrachloride. 138 mm Hg 
Cole and Shulman [8] Acetone. 222 mm Hg 
Cole and Shulman [S] Methanol. 134540 mm Hg 
Cole and Shulman [S] Toluene, 48 mm Hg 
Cole and Shulman [S] n-pentane. 524760 mm Hg 
Gaertner and Westwater [lo] Aqueous solution of nickel 

salts. 1 atm 
McFadden and Grassmann [ll] Liquid nitrogen. 1 atm 
Van Stralen [12] Water. 1 atm 
Siegel and Keshock [13] Water. 1 atm 
Perkins and Westwater [ 141 Methanol. 1 atm 
Hatton and Hall [15] Water. 447-14.7 psia 
Zmola [16] Water, 1 atm 
Howell and Siegel [17] Water, 1 atm 
Han and Griffith [IS] Water, 1 atm 
Gaertner [19] Water, 1 atm 
Westwater and Santangelo [20] Methanol, 1 atm 
Raben et al. [21] Water. 16760 mm Hg 

information, the departure diameter cannot be 
determined. Nevertheless, results of the force 
balance method provide the relevant departure 
parameters which might be used for correlating 
the experimental data. 
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The departure diameter has been obtained 
earlier by eliminating b among equations (9), 
(12) and (13). Instead of this if c is eliminated 
then. 

4’ = - 6 b&#dWh 5 [ 1 
(24) 

L ” 

where 4 < 0. Referring to equations (13), (16) 
and (24) it is evident that the departure diameter 
is influenced by three parameters: G(8), NJ,, 
and [g,a/(p, - p,)]. Consequently, an attempt 
to correlate the experimental departure sizes in 
terms of these three parameters is reasonable. 
Such a correlation has been proposed by Cole 
[9]. This author has chosen G(8) to be directly 
proportional to the contact angle 8. A more 
recent correlation proposed by Cole and Roh- 
senow [22] uses a modified Jakob number which 
does not involve the wall superheat and treats 
the contact angle as a constant. This, of course, 
simplifies the correlation. However, the authors 
were careful to note that the deviation of the 
experimental data from the proposed equations 
was partly a result of neglecting the effects of the 
dynamic contact angle and probably the wall 
superheat. 

It has become evident that the balance of 
forces technique, although useful, is limited in 
scope since, this approach can not take into 
account fully effects of the induced fluid motion 
on the bubble growth and departure process. 
There is, however, increasing evidence that these 
effects are important and cannot be neglected. 
Development of a general departure criterion 
based on the flow instabilities especially seems 
promising. This is one reason of the inclusion of 
a small neck in the bubble model of the present 
analysis. 

In the case of film boiling from a horizontal 
surface, theauthorshowed that [23] themaximum 
departure diameter could be determined by con- 
sidering the instability characteristics of the 
bubble neck. It was shown that the departure 
would occur as soon as the bubble neck became 
unstable. This approach is being used by 

the author to study the departure process in the 
case of nucleate pool boiling. 

For low viscosity liquids, the friction drag 
force can be neglected in the force balance 
approach ; even at high Jakob numbers. How- 
ever, the viscous effects can change noticeably 
the flow conditions around and inside the 
growingbubbleandthusinfluencethegrowthand 
the departure process. Unfortunately, details of 
the fluid flow field cannot be incorporated into 
the force balance equation. 
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DIAMBTRE MINIMUM DE BULLE AU DEPART LORS D’UNE ~BULLITI~N 
NUCLeE EN Rl?SERVOIR 

R&urn&On d6crit une mCthode pour dtterminer le diam&re minimum de bulle au dtpart dans une 
ibullition nucl&e saturee en reservoir. On montre que la taille minimum au d&part varie seulement avec 
le nombre de Jakob. Les rCsultats sont comparts avec les plus petits diamttres de d&part obtenus exptri- 
mentalement et rapport& dans la IittCrature. Un accord satisfaisant est obtenu quand la taille minimum 
a ttC dCtermink 21 partir de la loi de vitesse de croissance de la bulle recommandke par Cole et Shulman. 

DER MINIMALE BLASENABREISSDURCHMESSER FijR BLASENSIEDEN BE1 FREIER 
KONVEKTION 

Zusammenfassung-In dieser Arbeit wird eine Methode zur Bestimmung des minimalen Blasenabreiss- 
durchmessers liir Blasensieden bet freier Konvektion und SBttigung beschrieben. Es zeigt sich, dass die 
minimale Abreissdurchmessergriisse nur mit der Jakob-Zahl variiert. Die berechneten Ergebnisse werden 
mit den kleinsten experimentell bestimmten Abreissdurchmessern aus der Literatur verglichen, Eine 
befriedigcnde ijbereinstimmung wird erzielt, wenn die minimale Blasenabreissdurchmessergriisse auf 

der Basis des Blasenwachstumsgesetzes von Colt und Shulman bestimmt wird. 

0 MWHkIMAabHOM UkIAMETPE OTPbIBA HY3bIPbICA HP&I HY3bIPbKODOM 
ICBHEHRkl R BOJIbIIIOM OB’bBME 

AHEOTsqHsl-OnclCbIBaeTCn MeTOn Onpe~eJIeHHJ? MHHWMaJlbHOrO AMaMeTpa OTpbIB3 nJ'3bIpbK3 
npllnY3bIPbKOBOMKHneHanBBOnbILlOM 06%&e. ~OKa33HO,qTOMBHHMXIbHhIti pa3Mep OTpbIB3 
IQG?bIpbKZl M3MeHFIeTCR TOJIbKO B 33BRCWMPCTA OT YHCJI3 HKo6a. P33)'JIbTaTbl PaCydTOB 

CPaRHRB3IOTCRCH3MMeHbUlClMliRcIaMeTpaM~OTpbIB3, Ha6nIonaxorrlHMncn 3KCIIepHMt?HT3JIbHOEi 
naC3HHbIMIIBnRTepaType. Ha6nroaaeTcH y~OBJIeTBOpHTUIbHOE!COOTBt?TCTBIleCMHHEIM3JIbHblM 

p33MepOM OTpbIB3.~OJIJ'WHHbIM HZlOCHOBe33KOH3CKOPOCTM pOCTa,peKOMeH~yE!MOl-0 ~O)'JlOM 

II ~pJIbM3KOM. 


